在上一篇文章中,我和你介绍了join语句的两种算法,分别是Index Nested-Loop Join(NLJ)和Block Nested-Loop Join(BNL)。

我们发现在使用NLJ算法的时候,其实效果还是不错的,比通过应用层拆分成多个语句然后再拼接查询结果更方便,而且性能也不会差。

但是,BNL算法在大表join的时候性能就差多了,比较次数等于两个表参与join的行数的乘积,很消耗CPU资源。

当然了,这两个算法都还有继续优化的空间,我们今天就来聊聊这个话题。

我经常会被问到这样一个问题:我的主机内存只有100G,现在要对一个200G的大表做全表扫描,会不会把数据库主机的内存用光了?

这个问题确实值得担心,被系统OOM(out of memory)可不是闹着玩的。但是,反过来想想,逻辑备份的时候,可不就是做整库扫描吗?如果这样就会把内存吃光,逻辑备份不是早就挂了?

所以说,对大表做全表扫描,看来应该是没问题的。但是,这个流程到底是怎么样的呢?

在MySQL中有两个kill命令:一个是kill query +线程id,表示终止这个线程中正在执行的语句;一个是kill connection +线程id,这里connection可缺省,表示断开这个线程的连接,当然如果这个线程有语句正在执行,也是要先停止正在执行的语句的。

不知道你在使用MySQL的时候,有没有遇到过这样的现象:使用了kill命令,却没能断开这个连接。再执行show processlist命令,看到这条语句的Command列显示的是Killed。

你一定会奇怪,显示为Killed是什么意思,不是应该直接在show processlist的结果里看不到这个线程了吗?

今天,我们就来讨论一下这个问题。

其实大多数情况下,kill query/connection命令是有效的。比如,执行一个查询的过程中,发现执行时间太久,要放弃继续查询,这时我们就可以用kill query命令,终止这条查询语句。

今天我要和你讨论的是一个沉重的话题:误删数据。

在前面几篇文章中,我们介绍了MySQL的高可用架构。当然,传统的高可用架构是不能预防误删数据的,因为主库的一个drop table命令,会通过binlog传给所有从库和级联从库,进而导致整个集群的实例都会执行这个命令。

虽然我们之前遇到的大多数的数据被删,都是运维同学或者DBA背锅的。但实际上,只要有数据操作权限的同学,都有可能踩到误删数据这条线。

今天我们就来聊聊误删数据前后,我们可以做些什么,减少误删数据的风险,和由误删数据带来的损失。

为了找到解决误删数据的更高效的方法,我们需要先对和MySQL相关的误删数据,做下分类:

  1. 使用delete语句误删数据行;
  2. 使用drop table或者truncate table语句误删数据表;
  3. 使用drop database语句误删数据库;
  4. 使用rm命令误删整个MySQL实例。

之前介绍了主备切换流程。通过这些内容的讲解,你应该已经很清楚了:在一主一备的双M架构里,主备切换只需要把客户端流量切到备库;而在一主多从架构里,主备切换除了要把客户端流量切到备库外,还需要把从库接到新主库上。

主备切换有两种场景,一种是主动切换,一种是被动切换。而其中被动切换,往往是因为主库出问题了,由HA系统发起的。

这也就引出了我们今天要讨论的问题:怎么判断一个主库出问题了?

你一定会说,这很简单啊,连上MySQL,执行个select 1就好了。但是select 1成功返回了,就表示主库没问题吗?

大多数的互联网应用场景都是读多写少,因此你负责的业务,在发展过程中很可能先会遇到读性能的问题。而在数据库层解决读性能问题,就要涉及到接下来两篇文章要讨论的架构:一主多从。

今天这篇文章,我们就先聊聊一主多从的切换正确性。然后,我们在下一篇文章中再聊聊解决一主多从的查询逻辑正确性的方法。

在上一篇文章中,我和你介绍了几种可能导致备库延迟的原因。你会发现,这些场景里,不论是偶发性的查询压力,还是备份,对备库延迟的影响一般是分钟级的,而且在备库恢复正常以后都能够追上来。

但是,如果备库执行日志的速度持续低于主库生成日志的速度,那这个延迟就有可能成了小时级别。而且对于一个压力持续比较高的主库来说,备库很可能永远都追不上主库的节奏。

这就涉及到今天我要给你介绍的话题:备库并行复制能力。