在你开发应用的时候,一定会经常碰到需要根据指定的字段排序来显示结果的需求。还是以我们前面举例用过的市民表为例,假设你要查询城市是“杭州”的所有人名字,并且按照姓名排序返回前1000个人的姓名、年龄。

假设这个表的部分定义是这样的:

1
2
3
4
5
6
7
8
9
CREATE TABLE `t` (
`id` int(11) NOT NULL,
`city` varchar(16) NOT NULL,
`name` varchar(16) NOT NULL,
`age` int(11) NOT NULL,
`addr` varchar(128) DEFAULT NULL,
PRIMARY KEY (`id`),
KEY `city` (`city`)
) ENGINE=InnoDB;

这时,你的SQL语句可以这么写:

1
select city,name,age from t where city='杭州' order by name limit 1000  ;

这个语句看上去逻辑很清晰,但是你了解它的执行流程吗?今天,我就和你聊聊这个语句是怎么执行的,以及有什么参数会影响执行的行为。

全字段排序

前面我们介绍过索引,所以你现在就很清楚了,为避免全表扫描,我们需要在city字段加上索引。

在city字段上创建索引之后,我们用explain命令来看看这个语句的执行情况。

图1 使用explain命令查看语句的执行情况

Extra这个字段中的“Using filesort”表示的就是需要排序,MySQL会给每个线程分配一块内存用于排序,称为sort_buffer。

为了说明这个SQL查询语句的执行过程,我们先来看一下city这个索引的示意图。

从图中可以看到,满足city=’杭州’条件的行,是从ID_X到ID_(X+N)的这些记录。

通常情况下,这个语句执行流程如下所示 :

  1. 初始化sort_buffer,确定放入name、city、age这三个字段;
  2. 从索引city找到第一个满足city=’杭州’条件的主键id,也就是图中的ID_X;
  3. 到主键id索引取出整行,取name、city、age三个字段的值,存入sort_buffer中;
  4. 从索引city取下一个记录的主键id;
  5. 重复步骤3、4直到city的值不满足查询条件为止,对应的主键id也就是图中的ID_Y;
  6. 对sort_buffer中的数据按照字段name做快速排序;
  7. 按照排序结果取前1000行返回给客户端。

我们暂且把这个排序过程,称为全字段排序,执行流程的示意图如下所示,下一篇文章中我们还会用到这个排序。

图中“按name排序”这个动作,可能在内存中完成,也可能需要使用外部排序,这取决于排序所需的内存和参数sort_buffer_size。

sort_buffer_size,就是MySQL为排序开辟的内存(sort_buffer)的大小。如果要排序的数据量小于sort_buffer_size,排序就在内存中完成。但如果排序数据量太大,内存放不下,则不得不利用磁盘临时文件辅助排序。

你可以用下面介绍的方法,来确定一个排序语句是否使用了临时文件。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
/* 打开optimizer_trace,只对本线程有效 */
SET optimizer_trace='enabled=on';

/* @a保存Innodb_rows_read的初始值 */
select VARIABLE_VALUE into @a from performance_schema.session_status where variable_name = 'Innodb_rows_read';

/* 执行语句 */
select city, name,age from t where city='杭州' order by name limit 1000;

/* 查看 OPTIMIZER_TRACE 输出 */
SELECT * FROM `information_schema`.`OPTIMIZER_TRACE`\G

/* @b保存Innodb_rows_read的当前值 */
select VARIABLE_VALUE into @b from performance_schema.session_status where variable_name = 'Innodb_rows_read';

/* 计算Innodb_rows_read差值 */
select @b-@a;

这个方法是通过查看 OPTIMIZER_TRACE 的结果来确认的,你可以从 number_of_tmp_files中看到是否使用了临时文件。

number_of_tmp_files表示的是,排序过程中使用的临时文件数。你一定奇怪,为什么需要12个文件?内存放不下时,就需要使用外部排序,外部排序一般使用归并排序算法。可以这么简单理解,MySQL将需要排序的数据分成12份,每一份单独排序后存在这些临时文件中。然后把这12个有序文件再合并成一个有序的大文件。

如果sort_buffer_size超过了需要排序的数据量的大小,number_of_tmp_files就是0,表示排序可以直接在内存中完成。

否则就需要放在临时文件中排序。sort_buffer_size越小,需要分成的份数越多,number_of_tmp_files的值就越大。

我们的示例表中有4000条满足city=’杭州’的记录,所以你可以看到 examined_rows=4000,表示参与排序的行数是4000行。

sort_mode 里面的packed_additional_fields的意思是,排序过程对字符串做了“紧凑”处理。即使name字段的定义是varchar(16),在排序过程中还是要按照实际长度来分配空间的。

同时,最后一个查询语句select @b-@a 的返回结果是4000,表示整个执行过程只扫描了4000行。

这里需要注意的是,为了避免对结论造成干扰,我把internal_tmp_disk_storage_engine设置成MyISAM。否则,select @b-@a的结果会显示为4001。

这是因为查询OPTIMIZER_TRACE这个表时,需要用到临时表,而internal_tmp_disk_storage_engine的默认值是InnoDB。如果使用的是InnoDB引擎的话,把数据从临时表取出来的时候,会让Innodb_rows_read的值加1。

rowid排序

在上面这个算法过程里面,只对原表的数据读了一遍,剩下的操作都是在sort_buffer和临时文件中执行的。但这个算法有一个问题,就是如果查询要返回的字段很多的话,那么sort_buffer里面要放的字段数太多,这样内存里能够同时放下的行数很少,要分成很多个临时文件,排序的性能会很差。

所以如果单行很大,这个方法效率不够好。

那么,如果MySQL认为排序的单行长度太大会怎么做呢?

接下来,我来修改一个参数,让MySQL采用另外一种算法。

1
SET max_length_for_sort_data = 16;

max_length_for_sort_data,是MySQL中专门控制用于排序的行数据的长度的一个参数。它的意思是,如果单行的长度超过这个值,MySQL就认为单行太大,要换一个算法。

city、name、age 这三个字段的定义总长度是36,我把max_length_for_sort_data设置为16,我们再来看看计算过程有什么改变。

新的算法放入sort_buffer的字段,只有要排序的列(即name字段)和主键id。

但这时,排序的结果就因为少了city和age字段的值,不能直接返回了,整个执行流程就变成如下所示的样子:

  1. 初始化sort_buffer,确定放入两个字段,即name和id;
  2. 从索引city找到第一个满足city=’杭州’条件的主键id,也就是图中的ID_X;
  3. 到主键id索引取出整行,取name、id这两个字段,存入sort_buffer中;
  4. 从索引city取下一个记录的主键id;
  5. 重复步骤3、4直到不满足city=’杭州’条件为止,也就是图中的ID_Y;
  6. 对sort_buffer中的数据按照字段name进行排序;
  7. 遍历排序结果,取前1000行,并按照id的值回到原表中取出city、name和age三个字段返回给客户端。

这个执行流程的示意图如下,我把它称为rowid排序

对比图3的全字段排序流程图你会发现,rowid排序多访问了一次表t的主键索引,就是步骤7。

需要说明的是,最后的“结果集”是一个逻辑概念,实际上MySQL服务端从排序后的sort_buffer中依次取出id,然后到原表查到city、name和age这三个字段的结果,不需要在服务端再耗费内存存储结果,是直接返回给客户端的。

根据这个说明过程和图示,你可以想一下,这个时候执行select @b-@a,结果会是多少呢?

现在,我们就来看看结果有什么不同。

首先,图中的examined_rows的值还是4000,表示用于排序的数据是4000行。但是select @b-@a这个语句的值变成5000了。

因为这时候除了排序过程外,在排序完成后,还要根据id去原表取值。由于语句是limit 1000,因此会多读1000行。

从OPTIMIZER_TRACE的结果中,你还能看到另外两个信息也变了。

  • sort_mode变成了<sort_key, rowid>,表示参与排序的只有name和id这两个字段。
  • number_of_tmp_files变成10了,是因为这时候参与排序的行数虽然仍然是4000行,但是每一行都变小了,因此需要排序的总数据量就变小了,需要的临时文件也相应地变少了。

全字段排序 VS rowid排序

我们来分析一下,从这两个执行流程里,还能得出什么结论。

如果MySQL实在是担心排序内存太小,会影响排序效率,才会采用rowid排序算法,这样排序过程中一次可以排序更多行,但是需要再回到原表去取数据。

如果MySQL认为内存足够大,会优先选择全字段排序,把需要的字段都放到sort_buffer中,这样排序后就会直接从内存里面返回查询结果了,不用再回到原表去取数据。

这也就体现了MySQL的一个设计思想:如果内存够,就要多利用内存,尽量减少磁盘访问。

对于InnoDB表来说,rowid排序会要求回表多造成磁盘读,因此不会被优先选择。

这个结论看上去有点废话的感觉,但是你要记住它,下一篇文章我们就会用到。

看到这里,你就了解了,MySQL做排序是一个成本比较高的操作。那么你会问,是不是所有的order by都需要排序操作呢?如果不排序就能得到正确的结果,那对系统的消耗会小很多,语句的执行时间也会变得更短。

其实,并不是所有的order by语句,都需要排序操作的。从上面分析的执行过程,我们可以看到,MySQL之所以需要生成临时表,并且在临时表上做排序操作,其原因是原来的数据都是无序的。

你可以设想下,如果能够保证从city这个索引上取出来的行,天然就是按照name递增排序的话,是不是就可以不用再排序了呢?

确实是这样的。

所以,我们可以在这个市民表上创建一个city和name的联合索引,对应的SQL语句是:

1
alter table t add index city_user(city, name);

作为与city索引的对比,我们来看看这个索引的示意图。

在这个索引里面,我们依然可以用树搜索的方式定位到第一个满足city=’杭州’的记录,并且额外确保了,接下来按顺序取“下一条记录”的遍历过程中,只要city的值是杭州,name的值就一定是有序的。

这样整个查询过程的流程就变成了:

  1. 从索引(city,name)找到第一个满足city=’杭州’条件的主键id;
  2. 到主键id索引取出整行,取name、city、age三个字段的值,作为结果集的一部分直接返回;
  3. 从索引(city,name)取下一个记录主键id;
  4. 重复步骤2、3,直到查到第1000条记录,或者是不满足city=’杭州’条件时循环结束。

可以看到,这个查询过程不需要临时表,也不需要排序。接下来,我们用explain的结果来印证一下。

从图中可以看到,Extra字段中没有Using filesort了,也就是不需要排序了。而且由于(city,name)这个联合索引本身有序,所以这个查询也不用把4000行全都读一遍,只要找到满足条件的前1000条记录就可以退出了。也就是说,在我们这个例子里,只需要扫描1000次。

既然说到这里了,我们再往前讨论,这个语句的执行流程有没有可能进一步简化呢?

这里我们可以再稍微复习一下。覆盖索引是指,索引上的信息足够满足查询请求,不需要再回到主键索引上去取数据。

按照覆盖索引的概念,我们可以再优化一下这个查询语句的执行流程。

针对这个查询,我们可以创建一个city、name和age的联合索引,对应的SQL语句就是:

1
alter table t add index city_user_age(city, name, age);

这时,对于city字段的值相同的行来说,还是按照name字段的值递增排序的,此时的查询语句也就不再需要排序了。这样整个查询语句的执行流程就变成了:

  1. 从索引(city,name,age)找到第一个满足city=’杭州’条件的记录,取出其中的city、name和age这三个字段的值,作为结果集的一部分直接返回;
  2. 从索引(city,name,age)取下一个记录,同样取出这三个字段的值,作为结果集的一部分直接返回;
  3. 重复执行步骤2,直到查到第1000条记录,或者是不满足city=’杭州’条件时循环结束。

然后,我们再来看看explain的结果。

可以看到,Extra字段里面多了“Using index”,表示的就是使用了覆盖索引,性能上会快很多。

当然,这里并不是说要为了每个查询能用上覆盖索引,就要把语句中涉及的字段都建上联合索引,毕竟索引还是有维护代价的。这是一个需要权衡的决定。

小结

今天这篇文章,我和你介绍了MySQL里面order by语句的几种算法流程。

在开发系统的时候,你总是不可避免地会使用到order by语句。你心里要清楚每个语句的排序逻辑是怎么实现的,还要能够分析出在最坏情况下,每个语句的执行对系统资源的消耗,这样才能做到下笔如有神,不犯低级错误。

课后思考

1.假设你的表里面已经有了city_name(city, name)这个联合索引,然后你要查杭州和苏州两个城市中所有的市民的姓名,并且按名字排序,显示前100条记录。如果SQL查询语句是这么写的 :

1
mysql> select * from t where city in ('杭州',"苏州") order by name limit 100;

那么,这个语句执行的时候会有排序过程吗,为什么?

如果业务端代码由你来开发,需要实现一个在数据库端不需要排序的方案,你会怎么实现呢?

进一步地,如果有分页需求,要显示第101页,也就是说语句最后要改成 “limit 10000,100”, 你的实现方法又会是什么呢?

虽然有(city,name)联合索引,对于单个city内部,name是递增的。但是由于这条SQL语句不是要单独地查一个city的值,而是同时查了”杭州”和” 苏州 “两个城市,因此所有满足条件的name就不是递增的了。也就是说,这条SQL语句需要排序。

那怎么避免排序呢?

这里,我们要用到(city,name)联合索引的特性,把这一条语句拆成两条语句,执行流程如下:

  1. 执行select * from t where city=“杭州” order by name limit 100; 这个语句是不需要排序的,客户端用一个长度为100的内存数组A保存结果。
  2. 执行select * from t where city=“苏州” order by name limit 100; 用相同的方法,假设结果被存进了内存数组B。
  3. 现在A和B是两个有序数组,然后你可以用归并排序的思想,得到name最小的前100值,就是我们需要的结果了。

如果把这条SQL语句里“limit 100”改成“limit 10000,100”的话,处理方式其实也差不多,即:要把上面的两条语句改成写:

1
select * from t where city="杭州" order by name limit 10100;

1
select * from t where city="苏州" order by name limit 10100

这时候数据量较大,可以同时起两个连接一行行读结果,用归并排序算法拿到这两个结果集里,按顺序取第10001~10100的name值,就是需要的结果了。

当然这个方案有一个明显的损失,就是从数据库返回给客户端的数据量变大了。

所以,如果数据的单行比较大的话,可以考虑把这两条SQL语句改成下面这种写法:

1
select id,name from t where city="杭州" order by name limit 10100;

1
select id,name from t where city="苏州" order by name limit 10100

然后,再用归并排序的方法取得按name顺序第10001~10100的name、id的值,然后拿着这100个id到数据库中去查出所有记录。

上面这些方法,需要你根据性能需求和开发的复杂度做出权衡。

2.一个长连接,一条sql申请了sort_buffer_size等一系列的会话级别的内存,sql成功执行完,该连接变为sleep状态。这些内存只是内容会被情况,但是占用的内存空间不会释放?

排序相关的内存在排序后就free掉还给系统了

3.假设要给a值加1,执行器先找引擎取a=1的行,然后执行器给a+1,在调用接口写入a+1了数据。那么加锁不应该是在执行器第一次去取数据时,引擎层就加该加的锁?为什么要等到第二次调用写入数据时,才加锁。第一次和第二次之间,难道不会被其他事务修改吗?如果没有锁保证

读的时候加了写锁的

总结:

1.MySQL会为每个线程分配一个内存(sort_buffer)用于排序该内存大小为sort_buffer_size
1>如果排序的数据量小于sort_buffer_size,排序将会在内存中完成
2>如果排序数据量很大,内存中无法存下这么多数据,则会使用磁盘临时文件来辅助排序,也称外部排序
3>在使用外部排序时,MySQL会分成好几份单独的临时文件用来存放排序后的数据,然后在将这些文件合并成一个大文件

2.mysql会通过遍历索引将满足条件的数据读取到sort_buffer,并且按照排序字段进行快速排序
1>如果查询的字段不包含在辅助索引中,需要按照辅助索引记录的主键返回聚集索引取出所需字段
2>该方式会造成随机IO,在MySQL5.6提供了MRR的机制,会将辅助索引匹配记录的主键取出来在内存中进行排序,然后在回表
3>按照情况建立联合索引来避免排序所带来的性能损耗,允许的情况下也可以建立覆盖索引来避免回表

全字段排序
1.通过索引将所需的字段全部读取到sort_buffer中
2.按照排序字段进行排序
3.将结果集返回给客户端

缺点:
1.造成sort_buffer中存放不下很多数据,因为除了排序字段还存放其他字段,对sort_buffer的利用效率不高
2.当所需排序数据量很大时,会有很多的临时文件,排序性能也会很差

优点:MySQL认为内存足够大时会优先选择全字段排序,因为这种方式比rowid 排序避免了一次回表操作

rowid排序
1.通过控制排序的行数据的长度来让sort_buffer中尽可能多的存放数据,max_length_for_sort_data
2.只将需要排序的字段和主键读取到sort_buffer中,并按照排序字段进行排序
3.按照排序后的顺序,取id进行回表取出想要获取的数据
4.将结果集返回给客户端

优点:更好的利用内存的sort_buffer进行排序操作,尽量减少对磁盘的访问

缺点:回表的操作是随机IO,会造成大量的随机读,不一定就比全字段排序减少对磁盘的访问

3.按照排序的结果返回客户所取行数

根据本文,可以了解到这些问题:
1.全字段排序的流程是怎么样的?

2.sort_buffer_size, number_of_tmp_files, packed_additional_fields 这几个参数各是什么含义?

3.rowid排序的流程是怎么样的?

4.通过什么方式可以减少排序对于系统的消耗?


评论