在开始这篇文章之前,我们先来看一下这个问题:

在下面这个表T中,如果我执行 select * from T where k between 3 and 5,需要执行几次树的搜索操作,会扫描多少行?

下面是这个表的初始化语句。

1
2
3
4
5
6
7
8
mysql> create table T (
ID int primary key,
k int NOT NULL DEFAULT 0,
s varchar(16) NOT NULL DEFAULT '',
index k(k))
engine=InnoDB;

insert into T values(100,1, 'aa'),(200,2,'bb'),(300,3,'cc'),(500,5,'ee'),(600,6,'ff'),(700,7,'gg');

现在,我们一起来看看这条SQL查询语句的执行流程:

  1. 在k索引树上找到k=3的记录,取得 ID = 300;
  2. 再到ID索引树查到ID=300对应的R3;
  3. 在k索引树取下一个值k=5,取得ID=500;
  4. 再回到ID索引树查到ID=500对应的R4;
  5. 在k索引树取下一个值k=6,不满足条件,循环结束。

在这个过程中,回到主键索引树搜索的过程,我们称为回表。可以看到,这个查询过程读了k索引树的3条记录(步骤1、3和5),回表了两次(步骤2和4)。

在这个例子中,由于查询结果所需要的数据只在主键索引上有,所以不得不回表。那么,有没有可能经过索引优化,避免回表过程呢?

覆盖索引

如果执行的语句是select ID from T where k between 3 and 5,这时只需要查ID的值,而ID的值已经在k索引树上了,因此可以直接提供查询结果,不需要回表。也就是说,在这个查询里面,索引k已经“覆盖了”我们的查询需求,我们称为覆盖索引。

由于覆盖索引可以减少树的搜索次数,显著提升查询性能,所以使用覆盖索引是一个常用的性能优化手段。

需要注意的是,在引擎内部使用覆盖索引在索引k上其实读了三个记录,R3~R5(对应的索引k上的记录项),但是对于MySQL的Server层来说,它就是找引擎拿到了两条记录,因此MySQL认为扫描行数是2。

基于上面覆盖索引的说明,我们来讨论一个问题:在一个市民信息表上,是否有必要将身份证号和名字建立联合索引?

假设这个市民表的定义是这样的:

1
2
3
4
5
6
7
8
9
10
CREATE TABLE `tuser` (
`id` int(11) NOT NULL,
`id_card` varchar(32) DEFAULT NULL,
`name` varchar(32) DEFAULT NULL,
`age` int(11) DEFAULT NULL,
`ismale` tinyint(1) DEFAULT NULL,
PRIMARY KEY (`id`),
KEY `id_card` (`id_card`),
KEY `name_age` (`name`,`age`)
) ENGINE=InnoDB

我们知道,身份证号是市民的唯一标识。也就是说,如果有根据身份证号查询市民信息的需求,我们只要在身份证号字段上建立索引就够了。而再建立一个(身份证号、姓名)的联合索引,是不是浪费空间?

如果现在有一个高频请求,要根据市民的身份证号查询他的姓名,这个联合索引就有意义了。它可以在这个高频请求上用到覆盖索引,不再需要回表查整行记录,减少语句的执行时间。

当然,索引字段的维护总是有代价的。因此,在建立冗余索引来支持覆盖索引时就需要权衡考虑了。这正是业务DBA,或者称为业务数据架构师的工作。

最左前缀原则

看到这里你一定有一个疑问,如果为每一种查询都设计一个索引,索引是不是太多了。如果我现在要按照市民的身份证号去查他的家庭地址呢?虽然这个查询需求在业务中出现的概率不高,但总不能让它走全表扫描吧?反过来说,单独为一个不频繁的请求创建一个(身份证号,地址)的索引又感觉有点浪费。应该怎么做呢?

这里,我先和你说结论吧。B+树这种索引结构,可以利用索引的“最左前缀”,来定位记录。

为了直观地说明这个概念,我们用(name,age)这个联合索引来分析。

可以看到,索引项是按照索引定义里面出现的字段顺序排序的。

当你的逻辑需求是查到所有名字是“张三”的人时,可以快速定位到ID4,然后向后遍历得到所有需要的结果。

如果你要查的是所有名字第一个字是“张”的人,你的SQL语句的条件是”where name like ‘张%’”。这时,你也能够用上这个索引,查找到第一个符合条件的记录是ID3,然后向后遍历,直到不满足条件为止。

可以看到,不只是索引的全部定义,只要满足最左前缀,就可以利用索引来加速检索。这个最左前缀可以是联合索引的最左N个字段,也可以是字符串索引的最左M个字符。

基于上面对最左前缀索引的说明,我们来讨论一个问题:在建立联合索引的时候,如何安排索引内的字段顺序。

这里我们的评估标准是,索引的复用能力。因为可以支持最左前缀,所以当已经有了(a,b)这个联合索引后,一般就不需要单独在a上建立索引了。因此,第一原则是,如果通过调整顺序,可以少维护一个索引,那么这个顺序往往就是需要优先考虑采用的。

所以现在你知道了,这段开头的问题里,我们要为高频请求创建(身份证号,姓名)这个联合索引,并用这个索引支持“根据身份证号查询地址”的需求。

那么,如果既有联合查询,又有基于a、b各自的查询呢?查询条件里面只有b的语句,是无法使用(a,b)这个联合索引的,这时候你不得不维护另外一个索引,也就是说你需要同时维护(a,b)、(b) 这两个索引。

这时候,我们要考虑的原则就是空间了。比如上面这个市民表的情况,name字段是比age字段大的 ,那我就建议你创建一个(name,age)的联合索引和一个(age)的单字段索引。

索引下推

上一段我们说到满足最左前缀原则的时候,最左前缀可以用于在索引中定位记录。这时,你可能要问,那些不符合最左前缀的部分,会怎么样呢?

我们还是以市民表的联合索引(name, age)为例。如果现在有一个需求:检索出表中“名字第一个字是张,而且年龄是10岁的所有男孩”。那么,SQL语句是这么写的:

1
mysql> select * from tuser where name like '张%' and age=10 and ismale=1;

你已经知道了前缀索引规则,所以这个语句在搜索索引树的时候,只能用 “张”,找到第一个满足条件的记录ID3。当然,这还不错,总比全表扫描要好。

然后呢?

当然是判断其他条件是否满足。

在MySQL 5.6之前,只能从ID3开始一个个回表。到主键索引上找出数据行,再对比字段值。

而MySQL 5.6 引入的索引下推优化(index condition pushdown), 可以在索引遍历过程中,对索引中包含的字段先做判断,直接过滤掉不满足条件的记录,减少回表次数。

图3和图4,是这两个过程的执行流程图。

在图3和4这两个图里面,每一个虚线箭头表示回表一次。

图3中,在(name,age)索引里面我特意去掉了age的值,这个过程InnoDB并不会去看age的值,只是按顺序把“name第一个字是’张’”的记录一条条取出来回表。因此,需要回表4次。

图4跟图3的区别是,InnoDB在(name,age)索引内部就判断了age是否等于10,对于不等于10的记录,直接判断并跳过。在我们的这个例子中,只需要对ID4、ID5这两条记录回表取数据判断,就只需要回表2次。

小结

今天这篇文章,我和你继续讨论了数据库索引的概念,包括了覆盖索引、前缀索引、索引下推。你可以看到,在满足语句需求的情况下, 尽量少地访问资源是数据库设计的重要原则之一。我们在使用数据库的时候,尤其是在设计表结构时,也要以减少资源消耗作为目标。

课后思考

1.实际上主键索引也是可以使用多个字段的。DBA小吕在入职新公司的时候,就发现自己接手维护的库里面,有这么一个表,表结构定义类似这样的:

1
2
3
4
5
6
7
8
9
10
CREATE TABLE `geek` (
`a` int(11) NOT NULL,
`b` int(11) NOT NULL,
`c` int(11) NOT NULL,
`d` int(11) NOT NULL,
PRIMARY KEY (`a`,`b`),
KEY `c` (`c`),
KEY `ca` (`c`,`a`),
KEY `cb` (`c`,`b`)
) ENGINE=InnoDB;

公司的同事告诉他说,由于历史原因,这个表需要a、b做联合主键,这个小吕理解了。

但是,学过本章内容的小吕又纳闷了,既然主键包含了a、b这两个字段,那意味着单独在字段c上创建一个索引,就已经包含了三个字段了呀,为什么要创建“ca”“cb”这两个索引?

同事告诉他,是因为他们的业务里面有这样的两种语句:

1
2
select * from geek where c=N order by a limit 1;
select * from geek where c=N order by b limit 1;

我给你的问题是,这位同事的解释对吗,为了这两个查询模式,这两个索引是否都是必须的?为什么呢?

表记录

1
2
3
4
5
6
7
–a--|–b--|–c--|–d--
1 2 3 d
1 3 2 d
1 4 3 d
2 1 3 d
2 2 2 d
2 3 4 d

主键 a,b的聚簇索引组织顺序相当于 order by a,b ,也就是先按a排序,再按b排序,c无序。

索引 ca 的组织是先按c排序,再按a排序,同时记录主键

1
2
3
4
5
6
7
–c--|–a--|–主键部分b-- (注意,这里不是ab,而是只有b)
2 1 3
2 2 2
3 1 2
3 1 4
3 2 1
4 2 3

这个跟索引c的数据是一模一样的。

索引 cb 的组织是先按c排序,在按b排序,同时记录主键

1
2
3
4
5
6
7
–c--|–b--|–主键部分a-- (同上)
2 2 2
2 3 1
3 1 2
3 2 1
3 4 1
4 3 2

所以,结论是ca可以去掉,cb需要保留。

2.表的逻辑结构 ,表 —> 段 —> 段中存在数据段(leaf node segment) ,索引段( Non-leaf node segment),请问数据段就是主键索引的数据, 索引段就是二级索引的数据么

这样理解也算对,不过要记得 主键也是索引的一种哈

3.建立的每个索引都有要维护一个数据段么 ?? 那么新插入一行值 , 岂不是每个索引段都会维护这个值

是的,所以说索引越多,“维护成本”越大.

4.影响排序结果的情况下,在取出主键后,回表之前,会在对所有获取到的主键排序,请问是否存在这种情况?

有的, Multi-Range Read (MRR) 由于不论是否使用这个策略,SQL语句写法不变

5.下面两条语句有什么区别,为什么都提倡使用2:
1.select * from T where k in(1,2,3,4,5)
2.select * from T where k between 1 and 5

第一个要树搜素5次
第二个搜索一次

6.说下怎么让mysql的myisam引擎支持事务

用lock table 来实现,但是这样只能实现串行化隔离级别,

其它隔离都实现不了。

但是因为mysiam不支持崩溃恢复,所以即使用lock table硬实现,也是问题多多:

ACID里面, 原子性和持久性做不到;

隔离性只能实现基本用不上的串行化;
一致性在正常运行的时候依赖于串行化,在异常崩溃的时候也不能保证。

这样实现的事务不要也罢。

7.之前一般认为range查询比如”a > 5 and b = ‘123’”在联合索引(a,b)中b是不起作用的,在索引下推下是不是意味着b就可以起到作用了,我们还是应该尽量将查询中用到的字段放入联合索引中。

是的

8.针对7的问题,“a > 5 and a < 10 and b=’123’”在ICP作用下的执行过程是什么样子的?

流程是这样的:
a) 把 a>5 and b=’123’传入引擎,

b)引擎找到第一个a>5的行(这里是快速定位),如果发现b<>’123’,找下一个,直到满足b=’123’,

c)把找到的行返回给server层, server层根据a是否小于10决定要不要取下一个

9.mysql> select * from tuser where name like ‘张 %’ and age=10 and ismale=1;

为什么这个语句只走了name的索引,不走age,是只有name like ‘张三’ and age=10 才会走age吗

对的 ,前缀匹配

不过不是“只走了name的索引,不走age”

这是同一个索引,比较准确的描述是:

使用了这个索引的前两个字节做快速定位,然后由于有index condition pushdown优化,接下来遍历索引过程中

可以用age来过滤掉不满足条件的记录

10.5.6版本前只搜索了第一个字段就回表,那岂不联合索引都没有啥用了?

是说,用不上连续前缀索引的情况下才这样。
对于索引(a,b,c)
如果是a=1 and b=1 and c=1还是可以都用的
但是如果是a=1 and b<>1 and c=1就只能用第一个

11.覆盖索引这种情况,是不是查询的必须是主键,且是声明了主键的表。

只要查询的条件和返回字段中的 所有字段都能被一个非主键索引覆盖,就能用覆盖索引

总结:
1、覆盖索引:如果查询条件使用的是普通索引(或是联合索引的最左原则字段),查询结果是联合索引的字段

或是主键,不用回表操作,直接返回结果,减少IO磁盘读写读取正行数据

2、最左前缀:联合索引的最左 N 个字段,也可以是字符串索引的最左 M 个字符

3、联合索引:根据创建联合索引的顺序,以最左原则进行where检索,比如(age,name)以age=1 或 age= 1

and name=‘张三’可以使用索引,单以name=‘张三’ 不会使用索引,考虑到存储空间的问题,还请根据业务需求,

将查找频繁的数据进行靠左创建索引。

4、索引下推:like ‘hello%’and age >10 检索,MySQL5.6版本之前,会对匹配的数据进行回表查询。5.6版本

后,会先过滤掉age<10的数据,再进行回表查询,减少回表率,提升检索速度

根据本文,可以了解到这些问题:

1.select * from T where k betwee 3 and 5 这条语句的执行流程是什么样的?

2.回表的概念是什么?

3.索引覆盖的概念是什么, 索引覆盖的优点是什么?

4.最左前缀原则的概念是什么? 说明最左前缀原则的执行过程.

5.索引下推的概念是什么? MySQL 5.6 的下推优化是怎么做的?


评论